Terms and Symbols ■ Absolute Maximum Ratings

Term	Symbol	Definition
DC input voltage	$V_{\rm in}$	Maximum DC input voltage applied across input terminals
ON/OFF control terminal voltage	V	Maximum allowable voltage applied to ON/OFF control terminal
Output current	[0	Maximum allowable output current which can be fed continuously to output terminals (in case of resistance load)
Power dissipation	Po	Maximum power consumpttion which can be applied to a device. There are two types, namely no heat sink ($P_{\rm D1}$) and with infinite heat sink ($P_{\rm D2}$).
Junction temperature	Tj	Maximum junction temperature allowable during operation of a device
Operating temperature	Topr	Ambient temperature range ensuring normal function of a device
Storage temperature	Tstg	Ambient temperature range where deterioration of characteristic and reduction of reliability do not occur during long term holding withnut input to a device
Soldering temperature	Tsol	Maximum temperature allowable in soldering. Required condition is time setting.
Reset output applicable voltage	Vr	Maximum rating applicable to reset signal output terminal
output minute adjustment terminal voltage or output adjustment terminal voltage	Vadj	Maximum rating applicable to output voltage adjusting terminal
Input-output reverse voltage	v_{o-i}	Maximum reverse voltage between input and output
Bias supply voltage	$V_{\rm B}$	Maximum DC input voltage between bias supply voltage and GND terminal
Error input voltage	V_{adj}	Maximum voltage between oadj and COM terminal
※ Input-output voltage	Vi (1	Maximum voltage between Vin and $Vol\ \tau$
	Vour	Maximum reverse voltage applicable to Vour terminal against COM terminal
**ON/OFF control voltage	v,	Maximum voltage between ON/OFF and COM terminal
※ Switching current	Isw	Maximum peak current between VinandVou
*Drain-GND (source) voltage	Vos Max	ximum DC input voltage between drain and GND terminal
*Drain current	In	Maximum allowable output current which can be fed continuously between drain and GNI) (Source)
* FB terminal input voltage	V_{FB}	Maximum DC voltage between FB terminal and GND (Source)
*CA terminal input current	Ica	Maximum allowable current which can be fed continuously between CA terminal and GND (Source)

■ Electrical Characteristics

Term	Symbol	Definition
Output voltage	vu	Voltage applied across output terminals
Load regulation	RegL	Represents the fluctuation of output voltage with respect to fluctuation of load current. When the load current changes from Io1to Io2, and the output voltage changes from Vo1to Vo2, the RegL is expressed as follows: RegL = \[\frac{Vo1 - Vo2}{Vo2} \] \] \[\mathbf{x} \] 100 (%)
Line regulation	RegI	Represents the fluctuation of output voltage when the OC input voltage V, changes When the DC input voltage changes from V_{in1} to V_{in2} , and the output voltage changes frum V_{01} to V_{02} , RegI is expressed as follows: $RegI = \frac{I V_{01} - V_{02} \mid}{V_{01}} \times 100 \text{ (\%)}$
Temperature coefficient of output voltage	TeVo	Represents the fluctuation of output voltage when the device junction temperature changes. When the device junction temperature changes from T_{j1} to T_{j2} , and the output voltage changes from Vu 1toVo2, T, V_0 is expressed as follows: $T_cV_0 = \frac{(Vo2 - Vo1)}{V_0(T) = 25 \text{ C}} \times \frac{1}{T_{j2} - T_{j1}} 100(\%/\text{C})$

■ Electrical Characteristics

Term	Symbol	Definition
Ripple rejection	RR	Rate of reduction of AC voltage superposed on output voltage against input AC voltage when the AC sine voltage (frequency of 120 Hz, voltage of 0.5 V _{rms}) is superposed on the specified DC input voltage V _{in} Assuming that e, (V _{rms}) and e _c (V _{rms}) express the input AC wave component and output AC wave component, respectively, RR is represented by the following formula; $RR = 20 \times log \frac{e_i}{e_o} (dB)$
Dropout voltage	Vio	This represents the difference between DC input voltage V_{in} required for normal operation of a device and output voltage V_0 . Assuming that V_{in1} and V_{01} are DC input voltage and output voltage, respectively, in the case when V_{in1} is lowered and V_0 lowers by 5% below normal value (V_0 at specified $V_{,,0}$, V_{i-0} is represented by the following formula $V_{i-0} = V_{in1} - V_{01}$ (V)
ON-state voltage for control	Vc(ON)	Output control voltage Vc which must be applied between ON/OFF control terminal and GND which is necessary fur normal output voltage Vo Note: Even when the ON/OFF control terminal is opened, the output voltage is ON-state. (except PQ05RA series, PQ05SZ series, PQ05TZ series)
ON-state current for control	Ic(on)	Current which flows into the ON/OFF control terminal when the specified ON control voltage is applied to the ON/OFF control terminal.
OFF-state voltage for control	Vc(off)	Output control voltage Vc which must be applied between ON/OFF control terminal and GND which is necessary to turn off
OFF-state current for control	Ic(off)	Current which flows out from the ON/OFF control terminal when the specified output OFF control voltage is applied to the ON/OFF control terminal
Output voltage minute adjustment	Vo(adj)	Adjustable range of output voltage (Vo)
Reference voltage	Vref	Voltage between output minute adjustment terminal and GND, voltage between output adjustment terminal and C, ND.
Temperature coefficient of reference voltage	TcVref	Represents the fluctuation of reference voltage when the device junction temperature changes. When the device junction temperature changes from T_{j1} to T_{j2} , and reference voltage changes from V_{ref1} to V_{ref2} , T_rV_{ref} is expressed the following formula: $TcVref = \frac{V_{ref2} - V_{ref1}}{V_{ref}(T_j = 25^{\circ}C)} \times \frac{100}{T_{j2} - T_{j1}} (\%/^{\circ}C)$
"Low" reset output voltage	V_{rl}	Voltage between reset output and GND when reset signal is active and freed current is applied between reset output and GND.
Reset threshold voltage	Vrt	Output voltage when reset output is active (low), turning down the output voltage (VO).
Reset output leak current	Irlk	Current into reset output terminal when specified voltage is applied between reset output and GND.
Quiescent current	\mathbf{I}_{q}	Consumption current which flows out from the GND terminal when the specified input voltage is applied between Vin and GNI) in no load state
Output OFF-state consumption current	I_{qs}	Consumption current which flows out from the GND ternimal when the ON/OFF control terminal is turned off and the specified input voltage is applied between Vin and GND
Bias inflow current	Iв	Current which flows info bias power supply terminal when the specified load, input voltage, and bias power supply voltage are applied.
Bias limitation current	$I_{B(\ell)}$	Maximum current which flows into bias power supply terminal within a rating.
Ground current	I_g	Dissipation current which flows out from the GND terminal when no load, specified input voltage, and bias power supply voltage are applied.
OFF-state bias power supplyvoltage	VB(OFF)	Bias power supply voltage(V _R) which should be applied to bias power supply terminal which is nesessary to turn off output.
Overheat shut-down temperature	$T_{ m sd}$	Device temperature to shut down output voltage(Vo).
※ Output saturation voltage	V _(sat)	Voltage between V,, and V _{out} when output transistor is ON.
* Efficiency	η	Efficiency $\eta = \frac{V_0 \times I_0}{V_m \times I_m} \times 100 $ (%)

Terms and Symbols

Term	Symbol	Definition
X,* Oscillation frequency	fo	Oscillation frequency within a built-in oscillator
*,*Maximum duty	Dmax	Maximum ratio of power ON within a cycle
X,* Overcurrent detecting level	It.	Rate of switching current which begins to limit pulse width of TON (time which output transistor keeps ON).
X,* Charge current	Iсна	Current which flows into ON/OFF control terminal.
* Input threshold voltage	VTHL	Threshold voltage which should be applied between ON/OFF control terminal and COM in order to attain the condition, Duty=0%.
	Vтнн	Threshold voltage which should be applied between ON/OFF control terminal and COM in order to attain the condition, Duty=MAX. duty.
※ ON threshold voltage	V _{TH} (ON)	Threshold voltage which should be applied between ON/OFF control terminal and COM in order to attain the condition below, Consumption current=MAX.400 μ A (stand-by current)
X,* Stand-by current	Isd	Consumption current which flows into Vin when ON/OFF terminal is below $V_{TH(0N)}$
* Drain-source on state resistance	RDS(ON)	Drain-to-GND (Source) voltage when specified Drain current is applied during specified switching operation
* Drain-source leakage current	IDSS	Drain current when specified Drain-to-GND (Source) voltage is applied, and switching operation is in OFF-state
* FB thershold voltage	VfBI	Threshold voltage which should be applied between FB terminal and GND in order to attain the condition, Duty=0%.
	V _{FВН}	Threshold voltage which should be applied between FB terminal and GND in order to attain the condition, Duty=MAX. duty.
	VFB (OCP)	Rate of voltage which begins to recharge capacitor CA, between CA terminal and GND
* FB current	Ifb	Current which flows between FB-terminal and GND when VFB=GND
	Vcai	Threshold voltage which should be applied between CA terminal and GND in order to attain the condition, Duty=0%.
* CA threshold voltage	Vcah	Threshold voltage which should be applied between CA terminal and GND in order to attain tbe condition, Duty=MAX. duty.
	CA (ON/OFF)	Threshold voltage which should be applied between CA terminal and GND in order to attain the condition below, Consumption current=MAX.1.8mA (Output OFF-state consumption current).
	V(A(OVP:	Threshold voltage which should be applied between CA terminal and GND which is nesessary to shut-down switching operation.
* CA sink current	Icain	Current which flows in CA terminal at the specified condition. Current over ICAIN is nesessary to recharge capacitor CA, between CA terminal and GND for overvoltage protection.
* Operation starting voltage	Vcc (ON)	Voltage which turns on IC operation when power supply voltage becomes HIGH from LOW.
* operation stopping voltage	VCC (OFF)	Oltage which shuts down IC operation when power supply voltage becomes LOW from HIGH.

^{*} Applicable to chopper regulator

^{*} Applicable toprimary regulator